
8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 1

Event Stream Processing
Units in Business Processes

S. Appel, S. Frischbier, T. Freudenreich, A. Buchmann
Databases and Distributed Systems Group
TU Darmstadt
appel@dvs.tu-darmstadt.de
http://www.dvs.tu-darmstadt.de

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 2

Event Stream Processing
Units in Business Processes

S. Appel, S. Frischbier, T. Freudenreich, A. Buchmann
Databases and Distributed Systems Group
TU Darmstadt
appel@dvs.tu-darmstadt.de
http://www.dvs.tu-darmstadt.de

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 3

Event Stream Integration enhances
Business Processes

Task1 Task4

Task3

Task2

 Event Streams are
ubiquitous

 Integration of real
world feedback in
business processes:

 Enhanced processes

 New business cases

 Example: Logistics
process with
shipment monitoring

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 4

BPM World and the Event-based World

BPM WORLD

 Structured business
processes

 Top-down view

 Pull-based approach with
explicit invocation
SOA, Databases, ERP, etc.

 Data processing:
Request/reply

EVENT-BASED WORLD

 Real-time data streams
consisting of events

 Bottom-up view

 Push-based approach with
implicit invocation
Complex Event Processing etc.

 Data processing: Reactive
and asynchronous (pub/sub)

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 5

Integration of Event Stream
Processing in BPM Workflow

BP Modeling (BPMN)

BP Execution (BPEL)

IT Infrastructure (SOA)

Transition

Interaction

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 6

Business Functions: Coherent
Abstraction across Layers

BP Modeling
(BPMN)

BP Execution
(BPEL)

IT Infrastructure
(SOA)

BPMN Task

Service
Invocation

Web Service

B
usiness Function

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 7

Event Stream Processing
Encapsulation as Business Function

 Event Stream Processing Unit (SPU):
Container for event stream processing at the abstraction level
of a business function

 Main SPU characteristics across layers:

 Implicit invocation possible (triggered by event)

 Continuous operation
 no request/reply
 requires implicit and explicit

completion

 Input data not known at invocation
 publish/subscribe

 Need to be addressed across the
modeling, execution, and IT layer

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 8

SPU Realization across Layers

1. Modeling Layer
 BPMN notation for SPUs

 Execution semantics for continuous operation

 Data streams as input and output

2. Execution layer
 Process execution control flow with support for

implicit and explicit invocation

 Data input as subscriptions to events

3. IT Layer
 Service-like container model to encapsulate

event stream processing as business functions

<process name="pns:Caller">
<invoke partnerLink=“Link">
<service name="wns:Billing”/>

</invoke>
</process>

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 9

1. Modeling Layer:
BPMN 2.0 Extension

Event Stream
Processing Task

Input Event
Stream

Output Event
Stream

Event Stream
Processing Task

Implicit Completion Explicit Completion
Completion
Condition Stop Signal

 Event Stream Specification (ESS)
 Input Event Stream  Subscription

 Output Event Stream  Advertisement

 Event Stream Processing Task (ESPT)

 Continuous operation

 Explicit completion: triggered externally via signal

 Implicit completion: evaluated internally

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 10

1. Modeling Layer:
Task with Explicit Completion

 ESPT completion triggered by signal from within process

 Responsibility of process execution engine

 Completion when event processing is known to be not required
anymore

 Completion is controlled, e.g., persisting data, closing connections

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 11

1. Modeling Layer:
Task with Implicit Completion

 ESPT completion triggered from task application logic
implementation

 Responsibility of IT infrastructure

 Completion when condition is met (timeout, event pattern, etc.)

 Back channel to process execution engine

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 12

2. Execution Layer:
Runtime View

 Event stream processing unit instance per entity instance (e.g.,
per shipment)

 At execution layer, specification of SPU input to derive subscription

 Event Stream Filter: General filter, applies to all SPU instances

 Sub Stream Attribute: Identifies entity instance event streams

Sub Stream
Attribute

“Type==MonitoringEvent
AND ShipmentID==1“Event Stream

Filter

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 13

3. IT Layer: Eventlets as service-like
containers for event stream processing

ServiceB

ServiceA

Request/Reply (pull)

Enterprise Service Bus Event Bus

Pub/Sub (push)

EventletB

EventletA

 Service Tasks are mapped to web
services

 Event Stream Processing Tasks are
mapped to Eventlets

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 14

3. IT Layer:
Shipment Monitoring Example

Shipment Monitoring

CompletionCondition: Timeout(120sec)
EventStreamFilter: MonitoringEvent
SubStreamAttribute: ShipmentID

Eventlet Metadata

onInstantiation(subStreamId id) {
 limit = getTempThreshold(id); }

onEvent(Event e) {
 if (e.getValue(“temp”) > limit)

 raiseAlert(); }

onRemove() {}
onCompletion() {}

Eventlet Runtime Code <Shipment42>

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 15

Conclusion

 Event Stream Processing Units (SPUs) encapsulate event
stream processing as business function

 SPUs ensure a high coherence across modeling, execution, and
IT layer

 SPUs at modeling layer: Event Stream Processing Tasks as
BMPN extension with implicit and explicit completion semantics

 SPUs at execution layer: Support of implicit and explicit
instantiation by process execution engine

 SPUs at IT layer: Eventlets – Container
model for event stream processing

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 16

Questions and Comments

Stefan Appel
Databases and Distributed Systems Group
TU Darmstadt
appel@dvs.tu-darmstadt.de
http://www.dvs.tu-darmstadt.de

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 17

Overview

 Event stream processing and business processes management

 Event stream processing units (SPUs): Encapsulation of event
stream processing

 Integration of event stream processing:

 Business process modeling

 Business process execution

 Enterprise IT infrastructure

8/31/2013 | Databases and Distributed Systems Group | Stefan Appel | 18

Execution layer:
Mapping from Model to Execution

SPU:
Monitor

Shipment

Shipment
Monitoring

Events

 “Event compatible” equivalent to service invocation
 Explicit instantiation: Triggered when control flow reaches task

EsptInstantiate(MonitorShipment, MonitoringEvent,
ShipmentId, 42)

 Implicit instantiation: Data provided at registration of process
model
EsptRegister(MonitorShipment, MonitoringEvent, ShipmentId)

 Automatic creation of SPU instances and
synchronization with execution engine

Subscription example:
“Type==MonitoringEvent AND
ShipmentID==42“

